If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2=7k=0
We move all terms to the left:
2k^2-(7k)=0
a = 2; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·2·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*2}=\frac{0}{4} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*2}=\frac{14}{4} =3+1/2 $
| 3x+86°=5x+54° | | 3(2x+20)=-17-x | | 9(v+6)=3v+12 | | 42x-56=14(3x-4) | | z/10+5=7 | | -4x+2(1-4x)=-46 | | 5x3=5000 | | t=12.8*6.2 | | 21/20-4/5=x | | -7.85-0.1p+7.12=9.8+3.8p | | -3y-4=1y+4 | | 4x-13=+11-2x | | n.$100=$25 | | (3x-5)+(19-x)+(2x)=0 | | X=3/2x^2 | | x^2-76=400 | | 54/3.5=x/9= | | 5(9+m)-16=-1 | | 4x-12.5=3x3.5 | | 1/n^2=n-4/3n^2+1/3n^2 | | 725x–3;x=16 | | 2n+3(3n+4)=56 | | +4x=18+x | | 10y+25=15 | | x+5x-9=90 | | -9(y-1)=45 | | -32=3(u-4)-5u | | n÷4-4=-12 | | n.100=25 | | 8(u-8)=-72 | | (2^x+3)+(2^x)=54 | | 4/3(6x-9)=-10 |